
An Overview of
Prediction�Based Architectural Retiming

Soha Hassoun and Carl Ebeling

Department of Computer Science and Engineering

University of Washington� Seattle� WA

fsoha�ebelingg�cs�washington�edu

July� ����

Submitted for TAU��

Abstract

Architectural retiming ��� is a technique for optimizing latency�constrained circuits�
It is based on pipelining a latency�constrained path using a pair of registers� a negative
register followed by a pipeline register� The negative register which speeds up its input
cancels the latency of the added pipeline register� By increasing the number of clock
cycles available for the computation� the circuit can run at a smaller clock period� Two
implementations of the negative register are possible� precomputation and prediction�
In this paper we focus on the prediction implementation of the negative register� We
describe the timing characteristics and the operation of the predicting negative register�
We present an algorithm for synthesizing the negative register as a 	nite state machine
capable of the veri	cation of the previous prediction� the correction of mispredictions
if necessary� and generating new predictions if needed� We describe how don
t care
conditions can be utilized to minimize the frequency of mispredictions� We also brie�y
describe two correction strategies that enable circuits to return to correct operations
after mispredictions� The concepts are demonstrated using a controller example�

Contact Author�

Soha Hassoun
Department of Computer Science and Engineering� Box �
��
�
University of Washington� Seattle� WA ����
���
�
Fax� �����
��������
Phone� �����
���
����
e�mail� soha�cs�washington�edu

An Overview of
Prediction�Based Architectural Retiming

Soha Hassoun and Carl Ebeling

Department of Computer Science and Engineering

University of Washington� Seattle� WA

� Introduction

In many applications� improving the circuit
s performance is of paramount importance� Improving
performance usually means increasing the throughput� the rate at which the circuit completes
computations� or decreasing the execution time� the total time between the start and completion
of one computation� The improvement in performance is often obtained by optimizing the circuit
to run at a smaller clock period� even at the expense of increasing the latency� the number of
clock cycles between the start and completion of a computation� There are cases however when
performance cannot be improved due to a latency constraint� A latency constraint along a path
p simply 	xes the number of clock cycles that are available for performing the computation� No
additional pipelining is therefore allowed to reduce the clock period� Once the combinational delay
along p is minimized� and the registers are optimally placed in the circuit� then it is up to the
designer to change the circuit
s architecture to improve performance�
Latency constraints arise frequently in practice� Some latency constraints are imposed by

external performance requirements� For example� if the execution time and the clock period are
speci	ed� then only a 	xed number of clock periods is available to perform the computation�
Other latency constraints are caused by cycles in the circuit� Changing the number of registers
on a cycle changes the functionality of the circuit� The latency of each cycle is therefore 	xed�
External constraints can be modeled as cyclic constraints by feeding the output of an externally
constrained pipeline back to the input through a register external to the circuit� The circuit
s
critical cycle� the one with the maximum ratio of the delay along the cycle to number of registers�
can be easily identi	ed using e�cient algorithms ����
Consider the cyclic latency constraint in the controller example in Figure �� The circuit
s

critical cycle� consists of the logic through the fetch and decode block� the read operation of the
register 	le� the ALU� the PC �program counter� block� and through the PC register� Retiming ���
in this case does not help� Pipelining decreases the clock period� however� it will not improve the
throughput as now the controller can only execute a new instruction every other cycle� The ad
hoc solution here is to pipeline the critical cycle� and rely on a guessing mechanism to predict the
branch taken condition one cycle earlier� If the mispredictions are kept to a minimum� then the
overall throughput and thus the performance of the circuit is improved�
Architectural retiming ��� is a technique for optimizing latency�constrained circuits� It is based

on pipelining the latency�constrained path using a pair of registers� a negative register followed by
a pipeline register� Unlike the pipeline register which delays its input� a negative register speeds
up its input� The latency of the added pipeline register is canceled by the negative register� and
the two registers together act like a wire� By increasing the number of clock cycles available
for the computation� the circuit can run at a smaller clock period� and the circuit
s throughput
is improved� Two implementations of the negative register are possible� precomputation� and
prediction� In precomputation� the signal at the output of the negative register is precomputed
one cycle earlier using the combinational logic in the previous pipeline stage� In prediction�

�

Read

Write

Register File

Fetch &
Decode

ALU

Branch Taken Condition

OP Code

Destination Register

Old PC

PC

Fetch Address

R1

Branch Instruction &
Branch Offset Address

ALU out

Register Array

Source Registers

PC
Logic

Figure �� A controller with a critical path from the R� register� through the fetch and decode
logic� the read operation in the register 	le� the ALU� the logic to compute the program counter�
and back to the R� register

based implementations� the output of the negative register is predicted one cycle before the data
actually arrives at the input� The previous prediction is veri	ed each cycle� and the misprediction
is corrected if needed�
In this paper we focus on prediction�based architectural retiming� We begin by introducing

our model and notation� We then examine the timing characteristics of the predicting negative
registers and discuss the e�ects of mispredictions� both of which form the ground work for the
sections that follow� After that� we present an algorithm for synthesizing the negative register as
a 	nite state machine capable of veri	cation� correction� and prediction� We also describe how
to utilize don
t cares to reduce the frequency of mispredictions� Next� we brie�y describe two
strategies for returning to correct operation after mispredictions� We conclude with a discussion
of work in progress�

� Circuit Graph

All registers in a circuit are edge�triggered registers clocked by the same clock� Time is measured
in terms of clock cycles and the notation xt denotes the value of a signal x during clock cycle t�
where t is an integer clock cycle� Values of signals are referenced after all signals have stabilized
and it is assumed that the clock period is su�ciently long for this to happen� A register delays its
input signal y by one cycle� Thus� zt�� � yt� where z is the register
s output�
Each function f in the circuit has an output signal y computed using N input variables �or

signals� x�� x�� � � � � xN��� In a speci	c cycle t� the variable y is assigned the value computed by
the function f using speci	c values for x�� x�� � � � � xN��� that is� y

t � f�xt�� x
t
�� � � � � x

t
N����

A synchronous circuit� C� is modeled as a directed graph� G � �V�E�� The terms circuit and
graph are used interchangeably� The vertex set V � V C � V R � V I � V O is partitioned into
combinational logic� register� primary input� and primary output sets� Each combinational logic

�

combinat ional
block A

combinat ional
block B

N

primary
out put o

regist er
input r

primary
input j

regist er
out put qnegat ive

regist er

zyw

primary
input i

regist er
out put p

added pipeline
regist er

Figure �� The negative register is followed by the pipeline register� and they are both added along
a latency�constrained path containing blocks A and B�

component in the circuit is modeled as a vertex v � V C � and each register is modeled by a vertex
v � V R� Each primary input is represented with a vertex v � V I � Similarly� each primary output
is represented with a vertex v � V O� An edge� e� in the set of edges� E� from vertex u to vertex v
in V represents an interconnection between the two corresponding circuit components�
A path in the circuit between two nodes u and v refers to a sequence of vertices such that

each pair of successive vertices has an edge between them� A path is combinational if all the
vertices along the path are combinational vertices� A cycle is a path whose 	rst and last vertices
coincide� A cycle is simple if each node along the path is distinct� except for the 	rst and last
vertices which coincide� When referring to a cycle in the graph� the term cycle refers to a simple
cycle unless stated otherwise� All components around a cycle are either register or combinational
logic vertices� A combinational cone CCi that computes signal i is a subgraph in G � �E� V �� It
is de	ned recursively to include the following vertices and edges�

�� if vi � V R � V I � then vi is in CCi�

�� if vi � V C � V O� then vi and all its in�edges are in CCi� and the combinational cone of each
input to vi is also in CCi�

� The Predicting Negative Register

To perform prediction�based architectural retiming� the register pair� the negative register followed
by the pipeline register� is added along the latency�constrained path as illustrated in Figure ��
An instance of the operation of the negative register is shown in Table �� During each cycle�
the negative register veri	es the prediction from the previous cycle� If correct� then the negative
register generates a new prediction� otherwise� the negative register corrects the previous pre�
diction� The negative register then is responsible for three tasks� prediction� veri	cation� and
correction� Figure ��a� illustrates an implementation of the negative register� In Section � we
provide an algorithm for synthesizing the negative register as a 	nite state machine based on
transition probabilities provided by the designer�
The number of mispredictions can be decreased by utilizing don
t care conditions in the circuit�

If the circuit computes correctly �primary output o and register input r in Figure �� in the cycle

�

Cycle w y z Veri	cation Correct�
t� � v�j
t� � vj v�k v�j vj ��v

�
j yes

t vk vk v�k vk ��v
�
k no

t� � v�l vk No veri	cation necessary

Table �� An instance of the operation of the negative register in Figure �� A correct prediction is
indicated by v�m� A misprediction is indicated by v�m� A correct value is refered to as vm�

of the misprediction detection regardless of the misprediction� then there is no need to declare a
misprediction� Section ��� describes how to utilize don
t care conditions when synthesizing the
predicting 	nite state machine to decrease the frequency of mispredictions�
As seen in Table �� when a misprediction occurs� two cycles are required to compute a new

value� How does a misprediction then a�ect the operation and I�O behavior of the circuit� By
mispredicting the negative register creates invalid data� This invalid data must be managed
correctly� as it may a�ect the next iterations of the computation once the invalid data propagates
through the circuit through feedback loops� To ensure the correct operation of the circuit� we
must devise a correction mechanism that would allow the circuit to return to correct operation
after each misprediction� In Section
 we provide two mechanisms for nullifying the e�ects of
mispredictions�
Externally� architectural retiming may change the I�O behavior of the circuit� Because the

negative register takes an extra cycle to compute the correct value after a misprediction� there
is one cycle during which the circuit
s primary inputs and outputs are idle� the circuit cannot
consume new data� and the primary outputs are not capable of producing a new correct value�
The e�ect of applying architectural retiming is to create an elastic interface� which provides

�consumes� output �input� data at varying rates� Elastic interfaces are implemented by adding
handshaking mechanisms to the circuit� The circuit
s primary outputs must be paired with val�
idation signals� data valid� to inform the interface whether or not the circuit is providing data�
The circuit
s primary inputs must be stalled for one cycle for each misprediction to ensure that
the circuit is not provided with more data than what it can consume� Data not taken signals are
paired with the primary inputs to indicate when the input data is not taken� The two correction
strategies in Section
 include a description of how handshaking signals are used to ensure the
correct operation of the circuit�

� Oracle Synthesis

We realize the negative register as a 	nite state machine capable of verifying the previous guess�
correcting a misprediction� and providing a new prediction when the previous prediction is veri	ed
to be correct� Let
s assume that signal w� the input to the negative register� can have any of the
following values v�� v�� � � � � vn��� The user is responsible for providing transition probabilities
between the di�erent values of w� i�e� p�vi � vj�� for all � � i� j � n� ���
The 	nite state machine to be synthesized is a Mealy machine� where the new prediction and the

misprediction signal is generated in the same cycle when the actual signal arrives for veri	cation
�see Figure ��b��� For simplicity however� we synthesize a Moore machine which provides the

�The algorithm can be extended to accommodate more complex probability transition models� including the

correlation of signal w with other inputs to the combinational block driving w� The trade�o� to the increased

accuracy however is the increase in the complexity of the resulting FSM�

�

y z

Added
Pipeline
Register

z

Added
Pipeline
Register

1

0

Oracle

=?

w

y

misprediction

FSM

State

f(j,..., q,.....)

w

conditions
Don’t care

The predicting negative register The predicting negative register

(A) (B)

misprediction

Figure �� Realizations of the negative register� �a� During each cycle� previous guess is veri	ed�
The oracle provides a new prediction if needed� The misprediction signal selects between the
new prediction or the correction� �b� A Mealy 	nite state machine that implements the negative
register�

new prediction and misprediction signal one cycle later than needed� as the outputs of a Moore
machine are associated with states and not transitions� We then convert the Moore machine to
a Mealy machine which allows generating the new prediction and the misprediction signal once
cycle earlier than in the Moore machine ����

��� Finite State Machine Construction

A Moore machine is a ��tuple de	ned as M � �Q��� � �� �� q��� The set of states in M is Q� The
input alphabet is �� and the output alphabet is � Both � and are equal to fv�� v�� � � � � vn��g�
The transition function � is a mapping from Q�� to Q� The output function is a mapping from
Q to � and it is the value of y at the output of the negative register �either a new prediction or
a correction�� We describe how to generate the states and the transitions for the Moore machine�
To create the Moore predicting 	nite state machine� we 	rst create the set of states Q� For

each possible value� vi� we create a correct state�cvi � and an error state evi � The set Qc � Q is the
set of correct states� and has the states cv� � � � � � cvn�� � The output function ��cvi �� � � i � n� ��
is equal to vi� Similarly� the set of errors states� Qe� is a subset of Q� and consists of the states
ev� � � � � � evn�� � The output function ��evi�� for � � i � n � �� is equal to vi� When in a correct
state� then the FSM predicted correctly in the previous cycle� Transitioning into an error state
corresponds to declaring a misprediction� The correct state associated with the value that has the
highest probability of being correct is chosen as the initial state� q�� The designer may provide
that information� or it can be computed directly from the values of the transition probabilities�
We next create the transitions in the Moore state machine as follows�

�� Create transitions from correct states to correct states�

	cvi � Qc� p�vi � vj� � 	��k�n��max�p�vi � vk��
 ��cvi � vi� � cvj

From a correct state� we transition to the correct state with the output that has the highest
probability of being correct�

�� Create transitions from correct states to error states�

	vi ��vj �	cvi�Qc
� ��cvi � vj� � evj

Regardless of the probability� we transition on a misprediction to the error state that provides
correction�

�� Create transitions from error states to correct states�

	evi � Qe� p�vi � vj� � 	��k�n��max�p�vi � vk��
 ��evi ��� � cvj �

Here regardless of the input� we transition to the correct state with with the output that
has the highest probability of being correct�

Once the transitions are created� we can eliminate all non�reachable states�

��� Converting the Moore machine to a Mealy machine

Given a Moore machine M� � �Q��� � �� �� q��� we create an equivalent Mealy machine M� �
�Q���� � ��� ��� qr� as follows�

� For each state s � Q� we create an equivalent state s� � Q�� In addition� we add a new initial
state qr to Q

�� Therefore Q� � Q � fqrg�

� For each transition ��si� vj� � sk in M�� we de	ne a transition a similar transition in M��
���s�i� vj� � s�k� We also de	ne a new transition from the new initial state qr in M� to the
state equivalent to q�� That is� �

��qr ��� � q���

� Finally� to generate the output transition function ��� for each ��si� vj� � sk� we create a
output function ���s�i� vj� � ����si� vj��� FSM M� generates an output ok in state sk as
��sk� � ok� and we wish to produce that output as we transition from s�i to s

�
k in M��

The derived Mealy machine has the same exact output sequence as the original Moore machine�
however� it produces the output sequence one cycle earlier�

��� Reducing Misprediction Frequency by Using Don�t Care Conditions

There are two important questions to ask when utilizing don
t care conditions to reduce the
frequency of mispredictions� First� how do we determine if there is a don
t care condition which
we can take advantage of� More speci	cally� can we use available signals to decide if the outputs
of combinational block B in Figure � are insensitive to the fact that the previous prediction does
not match the actual value of w� The second question is how do we modify the Moore machine
described in the previous section to utilize don
t care conditions� We answer both questions�

The True Misprediction Function

Consider the illustration in Figure ��a�� Let
s label the inputs to each primary output or register
that can be reached from z via a combinational path as hj � for � � j � m � �� We also label
the primary inputs and register outputs that are inputs to combinational block B� excluding the
signal z if needed� as uk� for � � k � l � �� We label input z into combinational block B as
ul� A mismatch between the previous prediction value� vg � and the value of the current input

�

to the negative register� vt� can be ignored if the correct evaluation of each hj is not a�ected by
the misprediction� The function that computes true misprediction� fTM � is a function of uk� for
� � k � l � �� and evaluated based vg and vt� It can be computed as follows�

fTM �u�� u�� � � � � ul��� jvt�vg�
�

���i�m��

�hi�u�� u�� � � � � ul� jul�vt �hi�u�� u�� � � � � ul� jul�vg �

If any of the signals hj evaluated based on vg di�ers from the value evaluated based on vt� we
have a true misprediction�
The combinational circuit graph that computes fTM can be easily constructed by 	rst identi�

fying all signals hj � for � � j � m� �� and then constructing the combinational cones that drive
these signals as a function of the inputs uk� for � � k � l� We note here that the true prediction
function fTM is a symmetric function� that is fTM jvt�vg� fTM jvg�vt �

Modifying the Finite State Machine

Now we know how to de	ne fTM � We modify the Moore 	nite state machine presented in Sec�
tion ��� to use the true misprediction function� fTM � to reduce the misprediction frequency� First
we create additional transitions from correct states to other correct states as follows�

	vt ��vg� �	cg��Qc
� p�vt � vg�� � 	��k�n��max�p�vt � vk��
 ��cg�� �w � vt�
�fTM jvg��vt� � cg�

The idea here is that if the previous misprediction was vg�� and the current value of w is vt and
there was no true misprediction� then we should create a transition from cvg� to the state with the
output that has the most probability of being correct� cvg� �
We also modify the transition function from correct states to error states to only occur when

there is a true misprediction� That is�

	vt ��vg� �	cvg�Qc
� ��cvg � �w � vt�
 fTM jvg�vt� � evt

��� The Predicting FSM for the Controller Example

We illustrate the synthesis of the FSM that predicts the condition code for the controller in Fig�
ure �� We add the negative register followed by the pipeline register on the edge between the ALU
and the PC logic block� The branch taken condition� BTC� can have two values� � and �� We
assume that the p��
 �� is greater than p��
 ��� and that p��
 �� is greater than p��
 ���
We also assume that the probability of the branch taken condition being high is less than the
probability of it being low�
The synthesized FSM machine is shown in Figure �� The Moore machine in Figure ��a�c� has

two correct states� c� and c�� The two error states� Qe are e� and e�� The initial state is c��
Because the probability of the transition to the value � is higher than the value �� the transition
from each correct and error state terminates at c��
We now add the don
t care conditions� We start by computing fTM � In the original controller�

the program counter PC is computed each cycle as follows�

PC � �BTC
 BI���old PC � Branch O�set� � �old PC � ��

where BI is the branch instruction� and BTC is the branch taken condition� Thus� the fTM is�

fTM �BI� old pc�Branch O�set� � PC�BI� old pc�Branch O�set� jBTC�� �

PC�BI� old pc�Branch O�set� jBTC��

�

The function can be simpli	ed to�

fTM �BI� old pc�Branch O�set� � BI
 �Branch O�set �� ��

It is only when the instruction is a branch and the branch o�set address is not equal to one that it
is necessary to declare a misprediction� Note that� when simpli	ed� the true misprediction function
is not a function of the old PC� The modi	ed Moore machine is in Figure ��b�� The Moore FSM
with only the reachable states is shown in Figure ��c�� State c� and thus e� are non�reachable�
and both can be eliminated� The prediction mechanism here is very simple� Initially� upon reset�
the FSM predicts BTC to be �� If the prediction was correct or the PC logic computes correctly
�instruction is not a branch or it is a branch but the o�set address is ��� then the FSM predicts
� again and again� until a misprediction is declared� Once a misprediction is declared� the FSM
generates a �� and returns to predicting � in the cycle that follows�
The 	nal Mealy machine is shown in Figure ��d�� Misprediction is asserted whenever the FSM

transitions into state s�� We are currently working on an algorithm to trade o� the size of the
resulting 	nite state machine and the prediction accuracy�

1
c /1

c /000 00
e /0

1
e /1

1

BTC =1

BTC = 0

BTC = 0

BTC =1

BTC = -

BTC = -

1
c /1

c /000 00
e /0

1
e /1

1

OR

AND f_TM

OR !f_TM

!f_TM

BTC =1

BTC = 0

BTC = 0
BTC = -

BTC = -

AND f_TM
BTC =1

(b)(a)

(c) (d)

c /000

1
e /1

1

BTC = -

AND f_TM
BTC =1

OR !f_TMBTC = 0

Reset

- /
BTC* = 0

(BTC =0) OR (!BI) OR (Offset Address != 1)/
BTC* = 0

BTC* = 0- /

BTC* = 1
(BTC =1) AND (!BI) AND (Offset Address != 1)/

s1

s2

Figure �� Synthesizing FSM for controller example� �a� Initial Moore FSM� �b� Utilizing don
t care
conditions to reduce frequency of misprediction� �c� Eliminating non�reachable states� �d� Final
Mealy implementation of predicting negative register� fTM is the true misprediction function�
Signal BTC� is the output of the negative register representing the prediction of the branch
condition taken�

�

� Correction Strategies

One can view recovering from a misprediction as an urgent matter that must be attended to
immediately� or as a an accident that one should not worry about until necessary� Two recovery
strategies then are possible� The 	rst is as�soon�as�possible �ASAP� restoration� It eliminates the
e�ects of a misprediction in the cycle that the misprediction is discovered� The second strategy
is as�late�as�possible �ALAP� correction� The distinguishing feature of the latter is that invalid
data generated by the negative register are allowed to freely propagate throughout the circuit
unless a later iteration of the computation is a�ected� Due to space limitations� we outline the
basic ideas for these two strategies and omit the implementation details� An extension of our
circuit model to include register arrays as hierarchical graphs and implementation details of the
correction strategies are provided in ����

��� ASAP Restoration

The idea for ASAP restoration stems from the desire to turn back time� once a misprediction is
detected� and not mispredict� Since that is impossible� the closest alternative is to restore the state
and the evaluation conditions from the previous cycle� and correct the prediction� Restoring the
state requires setting the outputs of the registers to their value in the previous cycle� Providing
the same evaluation conditions requires that the primary inputs retain the same values for two
consecutive cycles� The values calculated by the nodes in the circuit with the exception of the
output of the negative register will then be identical for two consecutive cycles� In the same cycle
during which a misprediction is detected� the primary outputs are marked as invalid to prompt
the environment to ignore the duplication� In addition� the circuit will signal data not taken at
the primary inputs thus accommodating the one cycle penalty associated with the misprediction�

��� ALAP Correction

The key concepts in ALAP correction is to permit invalid data due to mispredictions to propagate
through the circuit and to modify each node to handle the invalid data when they arrive as inputs�
We explain what is needed to nullify the e�ects of the misprediction assuming that the negative
register mispredicts only once� and then extend the ideas to include multiple mispredictions�
If the negative register mispredicts in some cycle t� then the misprediction is detected in cycle

t � �� The output of the added pipeline register is marked as invalid� The data at the primary
inputs are marked as invalid� and the circuit
s interface is noti	ed �using signal data not taken�
to provide the same data again in cycle t � �� Consider any multi�input node� v� in the circuit�
Depending on the circuit topology� the invalid data due to the misprediction may arrive at v in
any cycle after t� The invalid data may also arrive along the di�erent input edges� Ein� to v in
di�erent cycles� There is a set of one or more edges� Ee � Ein� along which invalid data 	rst
arrives� let
s call that cycle te� Once the invalid data arrives along Ee� node v is forced to compute
invalid data� Meanwhile� the valid data along the input edges el �� �Ein�Ee� must not be ignored�
Node v is then responsible for temporarily bu�ering the valid inputs until cycle te � � when valid
inputs arrive along the edges in Ein and v can compute valid data� In cycle te � �� if valid data
arrives along an edge el� then the data must be bu�ered again while v is computing based on the
valid data that arrived in the previous cycle� The bu�ering and consuming of the one�cycle old
data continues until invalid data 	nally arrives along edge el� Then� node v uses the data in the
temporary bu�er� and no new data is stored in the bu�er� In the following cycle� node v uses the
valid data that arrives along el� Since each node in the circuit is reachable from either a primary

�

input or the negative register� it is guaranteed that invalid data due to the same misprediction
will eventually reach every node in the circuit�
The temporary storage for one valid data is not always su�cient� If invalid data due to a new

misprediction arrives along the edges in Ee before the invalid data due to the previous mispredic�
tion arrives along el� then another valid data must be also temporarily bu�ered� Moreover� the
valid data must be used by node v in the same order that it arrives in� Thus� a 	rst�in 	rst�out
queue is needed along the input edges in Ein �Ee�
An intuitive way to view the invalid data caused by a misprediction is as a wavefront that

propagates through the circuit� The wavefront 	rst originates at the output of the added pipeline
register and at the primary inputs� Each clock cycle� the wavefront moves to the following pipeline
stages� With the addition of the FIFO queues along the proper edges� each node in the circuit
meets the following criteria�

C�� Upon the arrival of a new wavefront� a node is forced to compute invalid data� as it cannot
possibly compute valid data�

C�� For each misprediction that occurs� each node generates only one invalid data�

Because we require that each modi	ed node propagates each wavefront only once �C��� which
occurs at the earliest time the wavefront arrives along any of the node
s inputs �C��� the movement
of the wavefronts is predictable regardless of the circuit topology� We can determine the earliest
time that a wavefront reaches a circuit node using a single�source shortest path algorithm� The
earliest arrival times can be used to determine the exact sizes of the queues

��� The Controller Example� Correction

We give a brief summary of how the controller example is conceptually modi	ed under both
correction strategies� We assume that the negative�pipeline register pair are added along the
edge between the ALU and the PC logic� When applying ASAP restoration to the controller
in Figure �� we must restore the state of the PC register� as well as the state of the register 	le�
Thus� in the cycle of misprediction detection� each circuit component with the exception of the
negative register reproduces the value from the previous cycle� There is a one�cycle misprediction
penalty associated with each misprediction�
Applying ALAP correction� we 	rst calculate the earliest arrival times of invalid data generated

at the output of the added pipeline register at each node in the circuit� All the nodes have an
earliest arrival time of one� with the exception of the PC logic and the PC register which have an
earliest arrival time of zero� A FIFO of depth one is then needed along the edge from the fetch
and decode logic to the PC logic to hold the valid branch instruction and branch o�set address
while the PC logic is calculating invalid data� To enforce condition C�� the register 	le must also
be modi	ed to not update it
s state in the cycle when the wavefront arrives at the register 	le
s
write node�

� Related Work

Holtmann and Ernst present a scheduling algorithm for high�level synthesis that applies a technique
that is modeled after multiple branch prediction in a processor �
�� The ASAP correction is
conceptually similar to their approach even though theirs is more general� as they allow more than
one cycle between predicting and the veri	cation� They add more than one register set to restore
the state in case of a misprediction�

��

Recently� Benini et al� described a technique similar in its goals to architectural retiming� that
is reducing the clock period and increasing throughput ���� The technique constructs a signal
which is asserted whenever an input vector to a combinational block requires more than the
reduced target clock period to evaluate� Once that signal is asserted� the combinational block
takes two cycles� instead of one� to complete the computation� Radivojevi!c et al� describe a
scheduling technique that employs pre�execution ���� All operations possible after a branch point
are precomputed before the branch condition is determined� Once the branch condition is known�
one of the pre�executed operations is selected�

� Conclusion and Status Report

This paper introduces some of the algorithms needed to automate prediction�based architectural
retiming� We implement the predicting negative register as a FSM capable of predicting� veri	ca�
tion� and correction� We outlined how to use don
t care conditions to minimize the frequency of
mispredictions� We brie�y presented two correction strategies� ASAP restoration and ALAP cor�
rection� to enable the circuit to function correctly after mispredictions� We have built a symbolic
simulator� ARsim� that validates both correction strategies� We are currently investigating circuit
implementation issues to enable us to architecturally retime and evaluate a set of examples�

References

��� L� Benini� E� Macii� and M� Poncino� 	Telescopic Units
 Increasing the Average Throughput of
Pipelined Designs by Adaptive Latency Control�� In Proc� ��th ACM�IEEE Design Automation Conf��
pages ��
�� �����

��� M� Hartmann and J� Orlin� 	Finding Minimum Cost to Time Ratio Cycles With Small Integral Transit
Times�� Technical Report UNC�OR�TR������� University of North Carolina� Chapel Hill� Oct� �����

��� S� Hassoun� �Architectural Retiming� A Technique for Optimizing Latency�Cosntrained Circuits�� PhD
thesis� University of Washington� Work in progress�

��� S� Hassoun and C� Ebeling� 	Architectural Retiming
 Pipelining Latency�Constrained Circuits�� In
Proc� of ��th ACM�IEEE Design Automation Conf�� June �����

��� U� Holtmann and R� Ernst� 	Combining MBP�Speculative Computation and Loop Pipelining in High�
Level Synthesis�� In Proc� European Design Automation Conf�� pages ���
�� �����

��� J� Hopcroft and J� Ullman� �Introduction to Automata Theory	 Languages	 and Computation��
Addison�Wesley� Reading� Massachusetts� �����

��� Z� Kohavi� �Switching and Finite Automata Theory�� McGrwa Hill� �����

��� C� E� Leiserson� F� Rose� and J� B� Saxe� 	Optimizing Synchronous Circuitry by Retiming�� In Proc�

of the �rd Caltech Conference on VLSI� Mar� �����

��� I� Radivojevi�c and F� Brewer� 	Incorporating Speculative Execution in Exact Control�Dependent
Scheduling�� In Proc� �
th ACM�IEEE Design Automation Conf�� pages ���
���� �����

��

